AMA COMPUTER COLLEGE (Laoag City) CIRCUITS LABORATORY

EXPERIMENT 2:

Voltage and Current Division

Objective:

Verify the voltage and current division properties.

Equipment:

- > Circuit board
- Assorted Resistors (1 K Ω , 2.4 K Ω , 5.6 K Ω and 1.2 K Ω)

Theory:

Voltage and Current division allow us to simplify the task of analyzing a circuit.

Voltage Division allows us to calculate what fraction of the total voltage across a series string of resistors is dropped across any one resistor.

For the circuit of Figure 1, Voltage Division formulas are:

$$V_1 = \frac{R_1}{R_1 + R_2} V_s \tag{1}$$

$$V_2 = \frac{R_2}{R_1 + R_2} V_S$$
 (2)

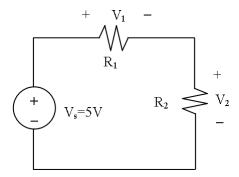


Figure 1. Voltage Divider

Current Division allows us to calculate what fraction of the total current into a parallel string of resistors flows through any one of the resistors.

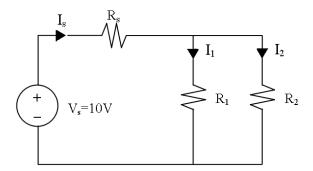


Figure 2. Current Divider

For the circuit of Figure 2, Current Division formulas are:

$$I_1 = \frac{R_2}{R_1 + R_2} I_s \tag{3}$$

$$I_2 = \frac{R_1}{R_1 + R_2} I_S$$
 (4)

Procedure:

- 1. Verifying the voltage division:
 - a) Construct the circuit as shown in Figure 1. Measure the voltages v_1 and v_2 by choosing $R_1 = 5.6 \text{ K}\Omega$, $R_2 = 1.2 \text{ K}\Omega$ and setting the variable power supply voltage $V_s = 5V$. Repeat this step for $R_1 = R_2 = 5.6 \text{ K}\Omega$ and note down the measurements.
 - b) Calculate the voltages V_1 and V_2 by using the formulas (1) and (2) in each case.
 - c) Compare the results from steps 1a and 1b.
- 2. Verifying the current division:
 - a) Construct the circuit as shown in figure 2. Measure the currents I_s, I₁ and I₂ by choosing $R_1 = 2.4 \text{ K}\Omega$, $R_2 = 5.6 \text{ K}\Omega$ and $R_s = 1 \text{ K}\Omega$. Set the variable power supply voltage at $V_s = 10 \text{ V}$. Repeat this step by using $R_1 = R_2 = 2.4 \text{ K}\Omega$ and note down the measurements.
 - b) Calculate the currents I_1 and I_2 by using the formulas (3) and (4).

c) Compare the results from steps 2a and 2b.

Questions for Lab Report:

- 1. How well did the measured outputs and calculated outputs compare? Explain any difference.
- 2. Can you apply current division to obtain I_1 and I_2 for the circuit shown in the figure below? Explain briefly.

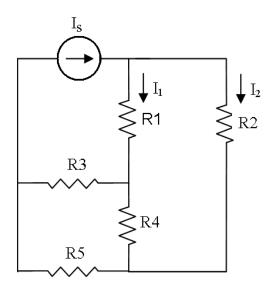
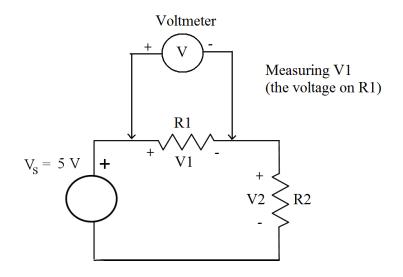
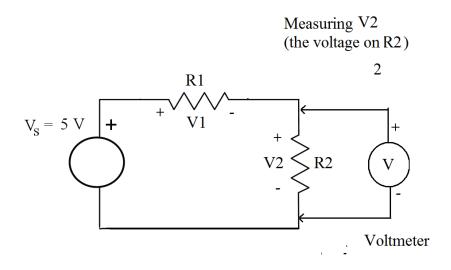
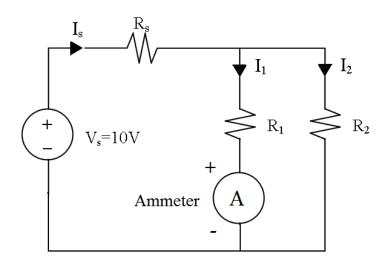
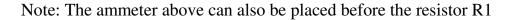
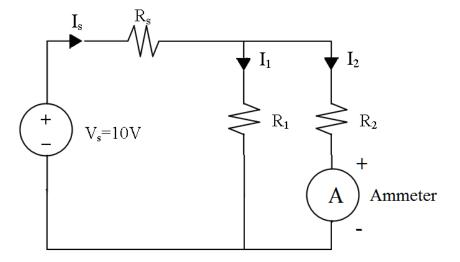




Figure 3.

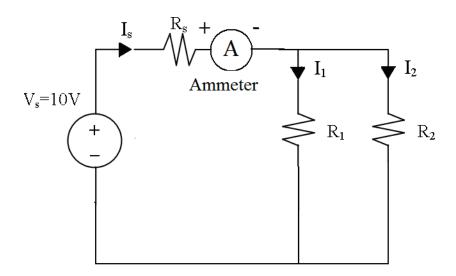
SOME EXAMPLES


VOLTAGE MEASUREMENT DETAILS OF FIG.1

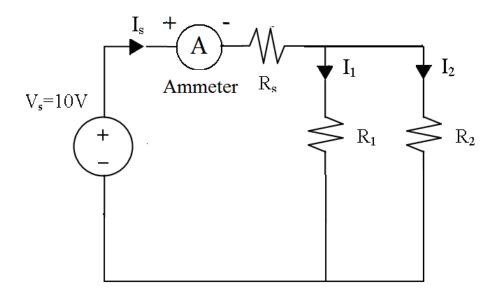



CURRENT MEASUREMENT DETAILS ON FIG.2

Measuring I₁ (the current thru R1) using an Ammeter (Digital Multimeter running in Ammeter Position)



Measuring I_2 (the current thru R1) using an Ammeter



Note: The ammeter above can also be placed before the resistor R2

Measuring the total current I_S (or the supply current)

Note: The following is another alternative when measuring I_S

