AMA COMPUTER COLLEGE (Laoag City)
 CIRCUITS LABORATORY

EXPERIMENT 2:

Voltage and Current Division

Objective:

Verify the voltage and current division properties.

Equipment:

\rightarrow Circuit board
$>$ Assorted Resistors ($1 \mathrm{~K} \Omega, 2.4 \mathrm{~K} \Omega, 5.6 \mathrm{~K} \Omega$ and $1.2 \mathrm{~K} \Omega$)

Theory:

Voltage and Current division allow us to simplify the task of analyzing a circuit.
Voltage Division allows us to calculate what fraction of the total voltage across a series string of resistors is dropped across any one resistor.

For the circuit of Figure 1, Voltage Division formulas are:

$$
\begin{align*}
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} V_{S} \tag{1}\\
& V_{2}=\frac{R_{2}}{R_{1}+R_{2}} V_{S} \tag{2}
\end{align*}
$$

Figure 1. Voltage Divider

Current Division allows us to calculate what fraction of the total current into a parallel string of resistors flows through any one of the resistors.

Figure 2. Current Divider

For the circuit of Figure 2, Current Division formulas are:

$$
\begin{align*}
& I_{1}=\frac{R_{2}}{R_{1}+R_{2}} I_{S} \tag{3}\\
& I_{2}=\frac{R_{1}}{R_{1}+R_{2}} I_{S} \tag{4}
\end{align*}
$$

Procedure:

1. Verifying the voltage division:
a) Construct the circuit as shown in Figure 1. Measure the voltages v_{1} and v_{2} by choosing $\mathrm{R}_{1}=5.6 \mathrm{~K} \Omega, \mathrm{R}_{2}=1.2 \mathrm{~K} \Omega$ and setting the variable power supply voltage $\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}$. Repeat this step for $R_{1}=R_{2}=5.6 \mathrm{~K} \Omega$ and note down the measurements.
b) Calculate the voltages V_{1} and V_{2} by using the formulas (1) and (2) in each case.
c) Compare the results from steps 1 a and 1 b .
2. Verifying the current division:
a) Construct the circuit as shown in figure 2 . Measure the currents I_{s}, I_{1} and I_{2} by choosing $\mathrm{R}_{1}=2.4 \mathrm{~K} \Omega, \mathrm{R}_{2}=5.6 \mathrm{~K} \Omega$ and $\mathrm{R}_{\mathrm{s}}=1 \mathrm{~K} \Omega$. Set the variable power supply voltage at $V_{s}=10 \mathrm{~V}$. Repeat this step by using $\mathrm{R}_{1}=\mathrm{R}_{2}=2.4 \mathrm{~K} \Omega$ and note down the measurements.
b) Calculate the currents I_{1} and I_{2} by using the formulas (3) and (4).
c) Compare the results from steps $2 a$ and $2 b$.

Questions for Lab Report:

1. How well did the measured outputs and calculated outputs compare? Explain any difference.
2. Can you apply current division to obtain I_{1} and I_{2} for the circuit shown in the figure below? Explain briefly.

Figure 3.

SOME EXAMPLES

VOLTAGE MEASUREMENT DETAILS OF FIG. 1

CURRENT MEASUREMENT DETAILS ON FIG. 2

Measuring $\mathbf{I}_{\mathbf{1}}$ (the current thru R1) using an Ammeter
(Digital Multimeter running in Ammeter Position)

Note: The ammeter above can also be placed before the resistor R1

Measuring $\mathbf{I}_{\mathbf{2}}$ (the current thru R1) using an Ammeter

Note: The ammeter above can also be placed before the resistor R2

Measuring the total current I_{S} (or the supply current)

Note: The following is another alternative when measuring I_{S}

